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These notes are based on two lectures given at the summer school QCIPU 2021
(Quantum Computing Internship for Physics Undergraduates) held virtually at Fer-
milab during July 6–23 2021.

The goal of these lectures was to introduce the idea of Hamiltonian time evolu-
tion in quantum mechanics, and to understand how we might simulate many-body
quantum systems on digital quantum computers.

If you find any errors or have any other comments, please feel free to let me know.
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1 Time evolution of quantum systems

So far in this school, you have developed an understanding of quantum bits and how you can
act on them to perform computations. We might call that a computational perspective. In these
lectures, we will take a more physical perspective. That is, we will think of the qubits as an
interacting physical system.
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1.1 Schrodinger equation

Imagine a pendulum with a rigid massless rod attached to a bob. There are two kinds of questions
that you can ask about this. One is: what are the states of equilibrium for this system? In other
words, what are the initial states which do not change with the passage of time? To find the
equilibrium configurations of the pendulum, you know what to do. You set the net force acting
on the bob to be zero: ~Ftotal = 0.

Another kind of question you can ask is, what happens when you start with a non-equilibrium
state? For this pendulum, imagine releasing the pendulum at some angle θ from the vertical at
time t = 0. What is the angle θ(t) at some time t > 0? This is a question about non-equilibrium
phenomenon. In particular, we would like to know how the system evolves under time, given any
arbitrary initial state. We also know how to do this. Provided we know all the forces acting on the
system, we use Newton’s second law

~Ftotal = m
d2~x

dt2
. (1)

This is a second-order differential equation in ~x which can be solved to find the time evolution of
the system, described by the function ~x(t).

In quantum mechanics, we can similarly ask these two kinds of questions: (i) What are the
stationary states of the system?, and (ii) How does the system evolve if you start away from a
stationary state? Recall that in classical mechanics, you need a description of all the forces acting
on the system to answer these questions, and then you can proceed to use Newton’s second law.
What is the analog in quantum mechanics?

In quantum mechanics, the equation which describes how a quantum state |ψ〉 evolves with
time is the Schrodinger equation,

i
∂|ψ〉
∂t

= H|ψ〉, (2)

where H is a Hermitian operator called the Hamiltonian. Specifying the Hamiltonian operator
for a quantum system is akin to specifying the forces on a classical system, and the Schrodinger
equation is analogous to Newton’s second law.

Let’s see what the Schrodinger equation says about stationary states. Let us say that the state is
|ψ0〉 at t = 0. We might be tempted to say that a stationary state is one that does not depend on
time at all, such that if |ψ(t)〉 = |ψ0〉 for all t ≥ 0. But we know that in quantum mechanics, an
overall phase does not change any measurements. So, a better definition would be to allow for a
phase:

|ψ(t)〉 = e−iλ(t)|ψ0〉, (3)

where have allowed for the phase λ(t) to depend on time. Plugging this in the Schrodinger
equation (2) gives

λ′(t)
(
eiλ(t)|ψ0〉

)
= H

(
eiλ(t)|ψ0〉

)
. (4)
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Let us further assume that the Hamiltonian H itself does not depend on time. Canceling the phase
on both sides, we get

λ′(t)|ψ0〉 = H|ψ0〉, (5)

Here, notice that the right-hand side is independent of time, therefore the function λ′(t) = λ must
be time-independent as well, which gives λ(t) = λt (plus an irrelevant constant which can be
absorbed in the definition of the initial state). For stationary states, the Schrodinger equation (2)
therefore simplifies to

λ|ψ0〉 = H|ψ0〉. (6)

This equation sometimes goes by the name of time-independent Schrodinger equation. What it is,
is just an eigenvalue equation for the operator H . It says that any eigenstate |ψ0〉 of the operator
H with eigenvalue λ is a stationary states, with the time-evolution given by

|ψ(t)〉 = e−iλt|ψ0〉. (7)

To find the set of all stationary states of a quantum system, you must find all the eigenstates of
the Hamiltonian, also called energy eigenstates. The set of all eigenvalues λ of the Hamiltonian
operator is also called the spectrum of the system.

Now, let’s move on the second question: what if the initial state of a system |ψ(0)〉 is not a
stationary state?

|ψ(0)〉 = |ψ0〉
time evolution−−−−−−−→ |ψ(t)〉 =? (8)

Well, now we really need to look at the time-dependent Schrodinger equation . Note that it is
clearly a linear differential equation. (This means that if you have two solutions |α(t)〉 and |β(t)〉,
then any linear combination a|α(t)〉+ b|β(t)〉 is also a solution.) So we should look for a linear
operator U(t), such that

|ψ0〉
time evolution−−−−−−−→ |ψ(t)〉 = U(t)|ψ0〉. (9)

What can we say about U(t)? Something we would like in quantum mechanics is for time-
evolution to preserve the norm of a state. Requiring 〈ψ(t)|ψ(t)〉 = 1 gives us

〈ψ0|ψ0〉 = 1 = 〈ψ(t)|ψ(t)〉
= 〈ψ0|U(t)†U(t)|ψ0〉. (10)

If this must be true for any initial state |ψ0〉, we must have U(t)†U(t) = 1. Therefore the operator
U(t) must be a unitary operator. Further, if |ψ(t)〉 = U(t)|ψ0〉 describes the time-evolution, it
must solve the Schrodinger equation. So let’s plug this into the Schrodinger equation:

iU ′(t)|ψ0〉 = HU(t)|ψ0〉. (11)

Since this must be true for any initial state |ψ0〉, we can get rid of the state and write this a
first-order linear differential equation for the operator U(t) itself:

iU ′(t) = HU(t). (12)
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So we need to solve this equation (12). If U(t) and H were just scalars, then you know that this
equation would be solved by U(t) = e−iHt. But what should we do if have operators? Well, it
turns out that this solution also works for operators! You can easily check this by just plugging
this solution into Eq. (12). So we can write the solution to the Schrodinger equation

U(t) = e−iHt. (13)

Recall that we need U(t) to be unitary. Is it?

Exponential of a matrix? You might be a bit puzzled about the exponential of a matrix
suddenly making an appearance. How should we define this object? We know that that the
exponential of a number x can be expanded as a power series

ex =
∑
n

xn

n!
(14)

We can generalize this definition for matrices too:

eA =
∑
n

An

n!
. (15)

where now A is a matrix. Since we know how to compute powers An of the matrix A, we
can use the above power series to define the matrix exponential eA. The only remaining
question here would be to show that the power series in Eq. (15) actually converges. Turns
out this is true and the matrix exponential is well-defined, but we will not worry about the
proof here. (As you will find out in your future studies, not worrying about convergence
issues (until you really have to) is somewhat of a recurring theme in physics.)

Using the power series, you can also show that the identity deλA

dλ = λeλA holds, which is
something we used above.

1.2 A single qubit

As we already know, a cool way to visualize the state of a single qubit is to use the Bloch sphere.
We can parametrize the state |ψ〉 by two angles θ, φ as

|Ψ〉 = cos(θ/2)| ↑〉+ eiφ sin(θ/2)| ↓〉. (16)

This state can be represented as a vector on the Bloch sphere, as shown in Fig. 1.
Now, let’s write down the simplest Hamiltonian we can. What could that be? Remember

that Hamiltonian needs to be a Hermitian operator. It needs to act on a 2-dimensional Hilbert
space. So, we’re looking for 2× 2 Hermitian matrices. Any such matrix would be a legitimate
Hamiltonian. But any such matrix can be written as a linear combination of the Pauli sigma
matrices and the identity matrix. (Make sure that this works by counting the number of free
parameters.) So the most general Hamiltonian would be

H = hxX + hyY + hzZ + cI, (17)

where hx, hy, hz, c are real parameters. We can simplify the notation by introducing the vector
~h = (hx, hy, hz) and write ~h = hn̂, where h = |~h| and n̂ is a unit vector in the direction of
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Figure 1: The state of a single qubit represented on the Bloch sphere.

~h. If we write the Pauli matrices as a vector ~σ = (X,Y, Z), then we can compactly write the
Hamiltonian H as

H = ~h · ~σ + cI. (18)

OK, so what does a qubit do we apply the time-evolution operator to it? Let’s start with the
simplest case and set hx = hy = c = 0, leaving us with

H = hZ. (19)

To find the time evolution of this, we must compute the exponential e−iHt. We can directly
compute

e−iH = e−ihtZ =

(
e−iht 0

0 eiht

)
(20)

Therefore, we can compute the action on the inital state given by Eq. (22)

|Ψ(t)〉 =

(
e−iht 0

0 eiht

)(
cos(θ/2)
eiφ sin(θ/2)

)
(21)

= e−iht
(

cos(θ/2)| ↑〉+ ei(φ+2ht) sin(θ/2)| ↓〉
)

(22)

Since the overall phase does not matter on the block sphere, we see that time evolution under this
Hamiltonian makes

(θ, φ)
eiĤt

−−→ (θ, φ+ 2ht) (23)
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This is just a rotation about the z-axis! So that’s what this Hamiltonian does. It rotates the qubit
about the Z-axis. Actually, this is not a coincidence. A slightly less trivial check would be to
repeat this exercise for

H = hX̂ (24)

and show that in fact this is a rotation about the X axis,

(θ, φ)
eiĤt

−−→ (θ − 2ht, φ). (25)

More generally, ~n · ~̂σ is a rotation about the axis given by the vector n̂. For the most general
single-qubit Hamiltonian given in Eq. (17),

Ĥ = h
∑
i

niσi + cI, (26)

the time-evolution is just

e−iĤt = e−iht~n·~σ︸ ︷︷ ︸
rotation
about ~n

e−ic︸︷︷︸
overall phase

. (27)

Let us remark that, in the language of quantum circuits that you already familiar with, the
time-evolution is just given by the single-qubit rotations. For example, the Hamiltonian above
can be implemented on a quantum circuit using a Z-rotation:

H = −hZ =⇒ e−itH = RZ(2jt). (28)

|ψ〉 RZ(2jt) e−iHt|ψ〉

Similarly, H = −hX or H = −hY can be simulated using single-qubit X or Y rotations.

1.3 Summary

• To summarize, I would like to emphasize that we have two equivalent ways of writing the
time-dependent Schrodinger equation

i
d

dt
|ψ〉 = H|ψ〉 ⇐⇒ |ψ(t)〉 = e−iHt|ψ(0)〉 (29)

provided that the Hamiltonian H itself does not depend on time. The Schrodinger equation,
along with the knowledge of the Hamiltonian H , tells you how a state |ψ(t)〉 evolves as a
function of time.

• Further, if we take the state |ψ(0)〉 to be some eigenstate |λ〉 of the Hamiltonian with
eigenvalue λ such that

H|λ〉 = λ|λ〉, (30)

then the time-dependent Schrodinger equation immediately tells us that these are “stationary
states,” meaning that they don’t evolve with time (except for an overall phase)

|ψ(t)〉 = e−iλt|λ〉. (31)
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• For a single qubit, the most general Hamiltonian is H = ~h · ~σ + cI . Time evolution under
this Hamilonian can be visualized on the Bloch sphere as rotation of the qubit state about
about the axis given by ~h with constant angular velocity determined by |~h|.

2 Quantum simulation on digital quantum computers

2.1 Two interacting qubits

Now let’s look a slightly more complicated system: two interacting spins. The Hilbert spaceH is
given by the tensor product of the Hilbert spaces of each individual spin C2, so that the

H = C2 ⊗ C2 ∼= C4. (32)

What is the most general Hamiltonian which could act on such a system? We need a 4 × 4
dimensional Hermitian matrix, which has 16 real parameters. We already know that the operators
I,X, Y, Z form a basis for the Hermitian operators on a single qubit. We can try to form all
possible combinations of these operators on the two-qubit space. This gives us:

H =
∑
i

h
(1)
i σ

(1)
i ⊗ I

(2) +
∑
i

h
(2)
i I(1) ⊗ σ(2) +

∑
ij

Jij σ
(1)
i ⊗ σ

(2)
j + cI(1) ⊗ I(2). (33)

If you count the number of parameters, you see that these are exactly 16 real parameters (3 from
h
(1)
i , 3 from h

(2)
i , 9 from Jij , and 1 from c).

Let us simplify the most general two-qubit Hamiltonian to understand the physics in a specific
case. First, we get rid of the single-spin operators, and the irrelevant constant term. This leaves
us with a genuine two-qubit interaction term

H =
∑
ij

Jij σ
(1)
i ⊗ σ

(2)
j . (34)

Let’s simplify this even further. We set all the Jij = 0 except J33 = −J . We get

H = −JZ(1) ⊗ Z(2). (35)

Now, what’s happening here? This Hamiltonian is already diagonal, so we can easily write down
the energy eigenstates and eigenvalues. The full spectrum is given by the following states and
energies:

| ↑↑〉 E = −J (36)

| ↓↓〉 E = −J (37)

| ↑↓〉 E = J (38)

| ↓↑〉 E = J. (39)

Which states have the lowest energy depends on the sign of J . For J > 0, we see that the spins
like to be aligned with each other. That is, the lowest energy states are the ones where both the
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spins are either up, or both of them are down. Such a system is called ferromagnetic. On the other
hand if J < 0, the spins like to be anti-aligned, and such a system is called antiferromagnetic.

We would like to study the time-evolution of the two-qubit system under this Hamiltonian.
Since this is still diagonal, we can of course trivially exponentiate it. But let’s imagine that we do
not know how to exponentiate it, but we do have a digital quantum computer. Can we construct a
circuit to perform time evolution on this two-spin system? We need to implement the operator
eiθZ1Z2 . It turns out there is a nice trick to implement this operator. Here, we use the notation
x⊕ y to denote the parity of the bits: x⊕ y = 0 if the sum x+ y is even; and x⊕ y = 1 if the
sum is odd. Now, if you start in a state |x〉|y〉 in the computational basis, then this operator just
applies a phase depending on the parity x⊕ y,

|xy〉 → eiθ|xy〉 if x⊕ y ≡ 0, (40)

|xy〉 → e−iθ|xy〉 if x⊕ y ≡ 1. (41)

This tells us how to implement the operator eiθZ1Z2 . We just need to measure the parity of the
state |xy〉, and apply the phase eiθ or e−iθ depending on the parity. This can be done easily using
CNOT gates and an auxiliary qubit, as shown in Fig. 2.

|x〉 • •

|y〉 • •

|0〉 eiθZ |0〉

Figure 2: Quantum circuit to implement the operator eiθZ1Z2 . The first two CNOT gates compute
the parity of the first two qubits and store it in the auxiliary qubit |xy〉|0〉 → |xy〉|x⊕y〉.
The operator eiθZ then applies an overall phase depending on the state of the third qubit:
|xy〉|x ⊕ y〉 → eiθf(x⊕y)|xy〉|x ⊕ y〉. Finally, we undo the CNOT gates, so that the
final state becomes eiθf(x⊕y)|xy〉|x⊕ y〉 → eiθ(x⊕y)|xy〉|0〉, which is what we need.

But what if you instead had the Hamiltonian H = −JX1X2? In that case, you could wrap the
time-evolution operator with Hadamard gates on each qubit to turn the X operators into Z, and
then just use the circuit described above, as shown in Fig. 3,

eiθX1X2 = H1H2e
iθZ1Z2H1H2. (42)

How would you simulate the Hamiltonian H = −JY1Y2?

2.2 More interacting qubits and the Suzuki-Trotter formula

In the previous sections, we completely solved the time evolution of a single qubit and even made
some progress for two interacting qubits. You could already see that the most general Hamilonian
for the two-qubit (which had 16 parameters) looked harder than the single-qubit case (which only
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eiθX1X2 =

H

eiθZ1Z2

H

H H

Figure 3: Quantum circuit to implement the operator eiθX1X2 . We use Hadamard gates to convert
the X operators to the Z operators and then use the circuit shown in Fig. 2.

had 4 parameters). As we start considering systems with larger and larger number of interacting
qubits N , you can see that this might quickly become very hard. (Merely the description of such
a Hamiltonian would require 4N parameters, which grows exponentially in N .)

Further, simulating such a generic Hamiltonian will require us to construct the operator eiHt.
We saw how construct this operator for the cases N = 1 and N = 2. What if N � 2? Systems
with larger N are not merely a curiosity. In fact, it is usually the limit of N → ∞ that is of
most interest in high-energy physics (where we encounter quantum fields) and condensed matter
physics (where we deal with a very large number of atoms in a material, for example).

So we need a way to simplify the problem of a large number of interacting qubits. Can
we perhaps restrict the class of Hamiltonians that we work with? Indeed, it turns out that the
Hamiltonians that appear in nature often have an additional property called locality. Intuitively,
locality is the idea that a qubit should not interact with a qubit which is far away.

For concreteness, imagine a solid material with N qubits arranged on a d-dimensional lattice.
Locality implies that the force exerted by one qubit only affects the qubits in its vicinity. For
example, we might have that each qubit in our lattice only interacts with its immediate neighbor
on the lattice. What should be the precise form of the interaction between a qubit and its
neighbor? In the last section, we already wrote down the most general two-qubit Hamiltonian,
and then considered the physics in a simpler case with the Hamiltonian H = −JZ1Z2. We can
imagine that the interaction energy of each neighboring pair (i, j) is just given by the two-qubit
Hamiltonian Hij = −JZiZj . The total energy of the system would then be just the sum of all
the interaction energies

H = −J
∑
[i,j]

ZiZj . (43)

where the notation [i, j] just means that the sum is over all neighboring pairs of qubits (i, j).
As we briefly mentioned with two qubits, for J > 0, this Hamiltonian favors aligned in the z-
direction. As you can imagine, with larger number of qubits, each qubit would like to get aligned
with its neighbors, which get aligned with their neighbors, and so on. Tiny local interactions can
therefore cause all the qubits to get aligned, and cause big changes on a large scale. Let’s also
add a single-qubit term to finally obtain

H = −J
∑
[i,j]

ZiZj − h
∑
i

Xi. (44)
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This particular Hamiltonian on N qubits is perhaps one of the most famous systems in physics.
It is called the Ising model, and it was originally introduced as a model of ferromagnetism.
Unfortunately, we do not have the time to study the physics of this model today, but I am sure
you will see much more of this as you go further in your studies.

What we would like to today ask is: how can we study the time-evolution of such a local
Hamiltonian on a large number of qubits N? We need to find a way to apply the operator e−iHt

to a state |ψ〉. This is of course a very large dimensional unitary matrix. However, each of the
terms in the Hamilonian (44) only consists of two-qubit and single-qubit terms. How can we
exploit this property?

We have an exponential of a sum of matrices. It is tempting write this as a product of
exponentials by using an identity of the sort

e−it(A+B) ?
= e−itAe−itB. (45)

If we could do something like this, we would be able to simply our job drastically, since we
would have converted the large N ×N unitary matrix as a product of unitaries that act only on at
most two qubits at a time:

e−iHT = eiTJ
∑

[i,j] ZiZj+iTh
∑

iXi (46)
?
=
∏
[i,j]

eiTJZiZj
∏
i

eiThXi . (47)

But, unfortunately, this is false in general if A and B are matrices!

e−it(A+B) 6= e−itAe−itB. (48)

Let’s try to explore what goes wrong in this formula. We can expand both sides and keep terms
up to order t2,

e−it(A+B) = 1− it(A+B)− 1

2
t2(A2 +B2 +AB +BA) +O(t3) (49)

e−it(A)e−itB =

(
1− itA− 1

2
t2A+O(t3)

)(
1− itB − 1

2
t2B +O(t3)

)
(50)

= 1− it(A+B)− 1

2
t2(A2 +B2 + 2AB) +O(t3) (51)

To study what’s going on, we can look at the difference

e−it(A+B) − e−itAe−itB =
1

2
t2[A,B] +O(t3). (52)

There are two interesting aspects to note here. The first one is that the “error” is proportional to
the commutator [A,B]. This is expected since we know that this formula should work when A
and B commute! The second aspect is that the error term goes is in fact O(t2). This suggests that
if we were looking at very small t, then the error would be very small and we could get away

10



with it. Here’s the final trick. We can always take up a large time t and divide it up into much n
smaller chunks, each of size ε, such that nε = t. This lets us write

e−it(A+B) = e−iε(A+B) e−iε(A+B) · · · e−iε(A+B) (53)

But, for each of the pieces, we could just write e−iε(A+B) = e−iεAe−iεB . Finally, we get

e−it(A+B) = lim
n→∞

[
e−itA/ne−itB/n

]n
(54)

This kind of decomposition goes by the name of Suzuki-Trotter formulas.

2.3 Putting it all together

Now, we can put together everything we have learned to construct a simple quantum circuit to
do time-evolution of the Ising model. It is enough to do this for a single time step. Secondly,
we already know how to implement the single qubit rotation eithXi for qubit i, as well as the
two-qubit gates eitJZjZk for qubits j, k. So we have decomposed the circuit as:

eiTH...
...

= eiεH eiεH eiεH...
... · · · ...

(55)

where each of the time steps eiHε is just composed of single-qubit and two-qubit gates.

2.4 Summary

• As the number of qubits N becomes larger, it quickly becomes very difficult to compute
the time evolution of a state e−iHt|ψ〉.

• The paradigmatic example of a system of large number of interacting qubits is the Ising
model given by the Hamiltonian H = −J

∑
〈ij〉 ZiZj + h

∑
iXi.

• Such Hamiltonians that appear in nature have the property of locality, where a given qubit
only interacts with a few qubits around it. We can exploit this property to construct a
quantum algorithm to perform the time evolution of this system starting from an arbitrary
initial state.

• For a Hamilonian H which is a sum of non-commuting operators, H = A + B, the
Suzuki-Trotter formula states that we may divide the total time T into n timesteps, and
repeatedly apply e−iεH ≈ e−iεAe−iεB

e−it(A+B) = lim
n→∞

[
e−itA/ne−itB/n

]n
. (56)
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